Изменение белков

Рыба содержит полноценные белки, которые являются основными поставщиками их для организма человека. Денатурация белков приводит к снижению их водосвязывающей способности, в результате чего продукты теряют воду вместе с растворенными в ней веществами. Это приводит к потере продуктами пищевых веществ и сокращению массы. Чтобы снизить глубину денатурационных изменений белков при тепловой обработке, прибегают к подкислению белковых систем, например путем маринования таких продуктов, как рыба. Длительное нагревание вызывает вторичные изменения в белковой молекуле, что приводит к резкому ухудшению усвояемости белка, поэтому при тепловой обработке продуктов следует соблюдать установленные режимы температуры и времени. Основными белками мышечной ткани являются: миозин, миоген, миоглобин и др.

Изменение мышечных белков: исследование белков мышечной ткани сырой и подвергнутой тепловой кулинарной обработке рыбы показало, что изменения направлены на значительное уменьшение растворимости миофибриллярных белков по сравнению с белками саркоплазмы, возрастание в 3…3,5 раза количества денатурированных белков и растворимых азотистых веществ, в том числе белковой природы, в связи с переходом коллагена в глютин. По мере прогревания кусков рыбы происходит денатурация мышечных белков. В отличие от мяса теплокровных животных коллаген мяса рыб менее устойчив к гидротермическому воздействию, денатурация начинается при довольно низкой температуре (30-50 оС), в соответствии с этим и переход коллагена в глютин происходит более быстрыми темпами и в более низком температурном интервале. В интервале 60-65 оС денатурация идет быстро к 80С денатурирует около 90-95 % белков. Денатурация белков вызывает их свертывание, гели мышечных волокон (миофибрилл) уплотняются. При этом уменьшается гидратация и выпрессовывается значительная часть воды вместе с растворенными в ней веществами (минеральные, экстрактивные, витамины). В результате уменьшается диаметр мышечных волокон, снижаются пищевая ценность продукта и масса полуфабриката. Чем выше температура нагрева, тем интенсивнее уплотнение волокон и больше потери массы и растворимых веществ. Поэтому рыбу рекомендуется варить и припускать при температуре 80-90 оС. При варке и припускании часть растворимых белков прежде, чем они денатурируют, переходят в бульон. Количество их невелико и не превышает 1% общего содержания. В дальнейшем эти белки также денатурируют и свертываются, образуя хлопья на поверхности бульона (пену). Помимо свертывания, при тепловой обработке рыбы частично происходят и гидролитические процессы.

Изменение белков соединительной ткани: соединительная ткань состоит в основном из белка коллагена. Коллаген рыб очень нестоек, поэтому рыбу любых пород можно использовать для жаренья. Растворы с большой концентрацией глютина при охлаждении образуют мясное или рыбное желе. Эластин находится в сухожилиях и практически при кулинарной тепловой обработке не размягчается, а только сокращается в объеме, особенно в длину, что приводит к деформации изделий. Поэтому сухожилия при изготовлении различных полуфабрикатов перерезают. Он также входит в состав органической части костей, кожи, чешуи, жаберных крышек, костных жучков осетровых рыб и т. д. При нагревании рыба так же, как и при тепловой обработке мяса, коллагеновые пучки соединительной ткани в присутствии воды набухают. Дальнейшее нагревание приводит к разрыву межмолекулярных связей и уменьшению длины волокон примерно на 1/3 их первоначальной длины (сваривание или усадка). В результате денатурации объем кусков рыбы сокращается, но менее значительно, чем мясо.

В кожных покровах рыбы сваривание коллагена вызывает большее сокращение линейных размеров (усадку) кожи, чем мышечной ткани. Это приводит к деформации кусков, поэтому перед тепловой обработкой на коже полуфабрикатов делают надрезы. Кожа рыбы после тепловой обработки сравнительно хорошо усваивается, так как коллаген после денатурации легче разрушается протеолитическими ферментами пищеварительного тракта.

При дальнейшем нагреве происходит деструкция коллагеновых волокон - распад их на отдельные полипептидные цепочки (дезагрегация коллагена). В результате коллаген превращается в растворимый глютин (желатин). Переход коллагена в глютин – основная причина размягчения рыбы, уменьшения механической прочности ее тканей. При чрезмерно продолжительной обработке весь коллаген септ превращается в глютин, мышцы распадаются на миокомы, в результате качество готовых изделий ухудшается.

 Изменение жиров (липидов)

При варке жир вытапливается. Количество такого жира зависит от жирности рыбы и характера его распределения в тканях. При варке рыбы содержание ненасыщенных жирных кислот уменьшается, насыщенных кислот увеличивается. Они сосредоточены в мясе, икре и молоках, в печени некоторых видов рыб. По содержанию липидов в съедобном мясе рыб подразделяют: на жирные, средней жирности и тощие. К жирным рыбам (содержание жира 12…30 %) относятся миноги, угорь речной, палтус черный, скумбрия тихоокеанская, осетровые, угольная рыба; к рыбам средней жирности (содержание жира 2…8 %) – карп, лещ, сазан, ставрида и др.; к тощим (содержание жира до 2%) – судак, щука, треска, пикша, сайда, минтай, зубатка, макрурус, навага и др. В состав липидов рыб входят триглицериды, свободные жирные кислоты, моно - и диглицериды, фосфолипиды, а также стерины, витамины, каротиноиды. Физико-химические изменения экстрактивных веществ и липидов рыб – одна из причин того, что пищевая ценность блюд, приготовляемых из рыбы длительного хранения, обычно значительно ниже, чем блюд, приготовляемых из живой или охлажденной рыбы. Эти различия особенно заметны при использовании морской рыбы, что необходимо учитывать в технологическом процессе.

 Изменение азотистых и минеральных веществ

Ферменты являются биологическими катализаторами, ускоряющими химические реакции при переваривании пищи организмом человека. Экстрактивные вещества пищи, воздействуя на нервные окончания пищеварительных органов и вызывая усиленное выделение пищеварительных соков, содействуют появлению аппетита и лучшему усвоению пищи.

Формирование своеобразного вкуса и аромата рыбы, подвергнутой тепловой кулинарной обработке, связано со своеобразным составом экстрактивных, минеральных веществ. Специфический вкус приготовленной рыбы обусловлен сравнительно высоким содержанием азотистых экстрактивных веществ (9…18 % общего азота мышц) и

своеобразием их состава. В мясе морских рыб, как правило, содержится больше экстрактивных веществ, чем в мясе пресноводных рыб. Среди свободных аминокислот в мясе рыб мало глутаминовой кислоты, обладающей вкусом, свойственным говяжьему мясу, и очень много циклических аминокислот – гистидина, фенилаланина, триптофана. Гистидин в значительных количествах содержится в темном мясе морских рыб: в скумбрии до 280 мг/100г, в тунцах до 400, в сайре до 500 мг/100г. В процессе посмертного автолиза рыбы в результате ферментативного декарбоксилирования гистидин превращается в гистамин, обладающий высокой биологической активностью и токсичностью. В малых концентрациях (до 100 мг/кг) гистамин оказывает сосудорасширяющее действие на организм человека, одновременно стимулирует деятельность желудочно-кишечного тракта. В более высоких концентрациях гистамин может вызывать тяжелые пищевые отравления. В связи с этим океанических рыб, содержащих повышенное количество темного мяса (сайру, сардину, скумбрию и др.), после вылова сразу направляют на промышленную переработку (консервы, копчение).

Креатин и креатинин в мясе рыб содержатся в сравнительно небольших количествах. В мясе морских рыб из веществ этой группы обнаружен метилгуанидин, которого нет в мясе пресноводных рыб и теплокровных животных. Метилгуанидин в больших концентрациях токсичен.

В мясе большинства рыб содержится мало пуриновых оснований, производных имидазола и холина. Так, карнозина в мясе пресноводных рыб содержится 3 мг/100 г, а в говядине – 300 мг/100 г, холина – соответственно 2,5 и 110/100г.

В составе экстрактивных веществ мяса рыб содержатся значительные количества азотистых оснований. Они подразделяются на летучие и триметиламмониевые. Среди летучих оснований преобладают моно-, ди- и триметиламин и аммиак. В свежевыловленной морской рыбе триметиламина содержится 2…2,5 мг/100г, в пресноводной – 0,5 мг/г. Аммиак в морской рыбе содержится 3…9 мг/100 г, в пресноводной – до 0,05 мг/100г. При хранении охлажденной рыбы под действием микроорганизмов количество летучих оснований в мясе рыб может возрастать. Среди триметиламмониевых оснований преобладают триметиаминоксид и бетаины, в морской рыбе они содержатся в количествах соответственно 100…1080 и 100…150 мг/100г.

При варке на переход экстрактивных и минеральных веществ из рыбы в бульон оказывают влияние не только денатурация мышечных белков и их постденатурационные изменения, но и диффузия. Количество растворимых веществ, переходящих из рыбы в бульон в результате диффузии, зависит от гидромодуля. В связи с этим порционные куски рыбы ценных пород обычно готовят припусканием с добавлением жидкости в количестве, не превышающем 30% к массе рыбы. Образующийся при этом бульон используют для приготовления соусов.

В рыбных бульонах содержится в среднем 28% экстрактивных и 24% минеральных веществ, 48% глютина. В бульонах, приготовляемых из рыбных отходов (голов, плавников, костей, кожи), содержание экстрактивных веществ не превышает 4%, минеральных – 11%. Остальная часть сухого остатка бульона состоит из глютина (74%) и эмульгированного жира.

Существенные различия в составе бульонов из рыбы и рыбных отходов объясняется тем, что экстрактивные и минеральные вещества сосредоточены в основном в мышечных волокнах. Минеральные вещества костей представлены нерастворимыми в воде фосфатами и карбонатами кальция.

По качественному составу экстрактивных азотистых веществ рыбные бульоны существенно отличаются от мясных. В рыбных бульонах преобладают циклические (гистидин, триптофан, фенилаланин) и серосодержащие (цистин, цистеин, триптофан, фенилаланин) свободные аминокислоты. В бульонах из океанических рыб содержится метилгуанидин – сильное основание, в больших концентрациях оказывающее токсическое действие на живые организмы. К особенностям рыбных бульонов относится содержание в них значительных количеств аминов, среди которых важная роль принадлежит к качеству и безопасности продовольственного сырья и пищевых продуктов установлен предельно допустимый уровень содержания гистамина в мясе некоторых видов рыб (тунец, скумбрия, лосось, сельдь), который составляет 100 мг/кг.

Содержащийся в мясе рыб креатин при тепловой кулинарной обработке частично превращается в креатинин, который вступает в химические реакции с продуктами карбониламинных реакций, свободными аминокислотами и сахарами с образованием гетероциклических ароматических аминов, обладающих сильным мутагенным и канцерогенным действием на живые организмы. В мясе беспозвоночных, не содержащем креатина, при тепловой кулинарной обработке гетероциклические ароматические амины не образуются.

 Изменение витаминов

Витамины — «добавочные факторы питания», как назвал впервые их открывший русский ученый Лунин, — способствуют процессам обмена и нормальным функциям организма человека.

Тепловая обработка продуктов животного происхождения при умеренных температурах (до 100 С) уменьшает содержание в них некоторых витаминов из-за химических изменений, но главным образом в результате потерь во внешнюю среду. В зависимости от способа и условий тепловой обработки мясо рыбы теряет, %: тиамина 30…60, пантотеновой кислоты и рибофлавина 15…30, никотиновой кислоты 10…35, пиридоксина 30…60, часть аскорбиновой кислоты.

При варке изделий в оболочке потери витаминов несколько меньше. Так, при паровой варке теряется 25…26% тиамина и 10…20 % рибофлавина, а при варке в воде – 10% тиамина и 14% рибофлавина.

Таким образом, тепловая обработка продуктов животного происхождения даже при умеренных температурах приводит к некоторому снижению их витаминной ценности.

 

 Потеря массы при тепловой кулинарной обработке

Общие потери массы при тепловой кулинарной обработке рыбы находятся в пределах 18…20 %, что вдвое меньше потерь массы мяса крупного рогатого скота. При варке рыбы определенную долю в общих потерях составляют экстрактивные, минеральные вещества и белки. Как при варке, так рыбы 90…95 % общих потерь массы составляют потери воды, отделяемой денатурирующими мышечными белками.

Воды в мясе рыб от 55 до 83 %. Потеря воды при хранении в количестве 3-5 % значительно ухудшает вкусовые свойства свежей рыбы.

Вода растворяет многие пищевые вещества, перемещает их по всему организму и участвует в построении тканей и органов человека. Вода входит в состав мяса рыбы и её съедобных внутренностей.

При температурах выше 75 оС обезвоживание говядины и мяса рыбы идет интенсивно, причем в говядине – более быстрыми темпами. При температурах выше 75С потери рыбой воды прекращаются, в то время как говядина теряет воду вплоть до снижения температуры 90…95оС, что указывает на более низкие температурные границы денатурации и свертывания белков рыбы по сравнению с мышечными белками теплокровных животных.

Сравнительно небольшие потери воды мясом рыб при тепловой кулинарной обработке объясняются особенностями его химического состава и гистологического строения: высоким содержанием белков актомиозинового комплекса в миофибриллах мышечных волокон; простым строением перимизия мышц; сравнительно низкой температурой денатурации и деструкции коллагена внутримышечной соединительной ткани. Тепловая денатурация мышечных белков сопровождается сравнительно слабой их дегидратацией. Вода, отделяемая белковыми гелями мышечных волокон и поступающая в пространство между пучками мышечных волокон, слабо выпрессовывается в окружающее пространство из-за незначительной деформации внутримышечных соединительнотканных образований мышц рыбы и сравнительно быстрой желатинизации коллагена. В результате этого мясо рыб при тепловой обработке теряет не более 25% содержащейся в ней воды. Изменение массы рыбных полуфабрикатов зависит, с одной стороны, от потери влаги и растворимых веществ, а с другой – от поглощения влаги коллагеном. Кроме того, на изменение массы влияет количество выделившегося или поглощенного жира. При тепловой обработке потери массы рыбы составляют в среднем 18-20 %, что вдвое меньше потерь мяса крупного рогатого скота. При варке в бульон переходит 1,5-1,6 % (массы рыбы) растворимых веществ. Большая часть (около 50%) извлекаемых веществ – белки (частично свертывающиеся при нагревании, частично остающиеся в бульоне), остальные - глютин, экстрактивные вещества, минеральные элементы, жир. В состав экстрактивных веществ входят аминокислоты, дипептиды (карнозин, ансерин), амины, безазотистые экстрактивные вещества и др. Рыбные отходы - головы, хвосты, плавники и кости, получаемые при разделке рыб, используют для варки бульонов. В рыбных отходах по сравнению с мясными костями больше воды, меньше жира минеральных веществ. Во время варки из рыбных отходов в бульон переходит главным образом клей, образующийся из азотистого клейдающего вещества, и жир, расплавляющийся от действия высокой температуры. Минеральные вещества костей почти нерастворимы в воде, поэтому при варке они выделяются в ничтожном количестве. Состав рыбных бульонов, получаемых от варки рыбных отходов, зависит от соотношения между количествами воды и продукта, взятыми для варки, и степени уваривания.

 

Изменение основных пищевых веществ мяса в процессе варки

 Изменение белков

В процессе тепловой денатурации и последующей коагуляции происходят структурные изменения белков, разрыв прежних и образование новых связей при участии водородных связей, сульфгидрильных, дисульфидных, кислых и основных групп белков и гидрофобных взаимодействий.

Р. Гамм показал, что нагрев мяса в воде от 20 до 70оС вызывает ступенчатое уменьшение числа карбоксильных групп в белках миофибрилл при существенно не изменяющемся количестве основных групп. Достоверные изменения кислых групп начинаются при температуре 40оС. В интервале 40…50оС количество их снижается, при 50..55оС оно остается неизменным. При температуре выше 55оС число кислых групп продолжает уменьшаться, а при температуре около 60 оС оно уменьшается очень значительно. Общее снижение числа кислых групп при нагревании до 70оС составляет 85%. При температуре от 70 до 120оС наряду с дальнейшим сокращением числа кислых групп начинается уменьшение числа основных.

Изменение соотношения заряженных (кислых и основных) групп в результате денатурации и постденатурационных превращений связано с изменением pH. В то же время установлен факт прямой корреляционной зависимости между значением pH сырья, водоудерживающей способностью и выходом готового продукта. Чем выше исходное значение pH сырья, тем лучше качество (сочность) готового продукта. Величина изменений pH зависит от температуры и способа нагрева, исходного значения pH сырого мяса.

На величину смещения pH влияет также анатомическое происхождение мышц.

С повышением температуры нагрева изменяется водоудерживающая способность и сдвигается изоточка фибриллярных белков к более высоким значениям pH, увеличивается число основных групп. При тепловой денатурации происходит также сдвиг изоточки к более высоким значениям pH, увеличивается число основных групп. При тепловой денатурации происходит также сдвиг изоточки к более высоким значениям pH, видимо, вследствие расщепления водородных связей и освобождения дополнительных положительных зарядов.

Нагрев сопровождается уменьшением растворимости белков. Разорвавшиеся при денатурации внутримолекулярные связи взаимодействуют межмолекулярно, в результате чего происходит агрегирование частиц. Иными словами, денатурационные изменения макромолекул белка, изменяя поверхностный слой молекулы, ведут к нарушению соотношения гидрофильных и гидрофобных группировок в сторону повышения последних, что и приводит к уменьшению растворимости.

При нагревании уже при 40оС наблюдается выпадение саркоплазматических белков, причем наиболее сильно – при pH 5,5. Основная масса этих белков коагулирует в интервале 55…65 оС.

Имеются сведения о термостойкости белков: например, аденилкиназа выдерживает температуру около 100 оС.

Изменение коллагена под воздействием тепла – сложный процесс, складывающийся из двух этапов: сваривания и гидролиза коллагена. Коллаген является гликопротеидом, в котором содержание ковалентно связанных углеводов варьирует в зависимости от источника получения белка.

Растворимая часть коллагена – проколлаген и нерастворимая – колластромин различаются температурами денатурации и характером денатурационных превращений. Денатурация проколлагена протекает двухстадийно и заканчивается при температуре 36,5 оС, образуя при этом гомогенную прозрачную массу, переходящую в раствор. Колластромин переходит в гомогенное состояние при более высокой температуре или при более длительном тепловом воздействии.

В интервале температур 62…64оС при нагреве в воде происходит мгновенное сморщивание коллагеновых волокон, которые, складываясь втрое по отношению к своей первоначальной длине, превращаются в резиноподобную массу. В процессе сморщивания трехспиральная структура пептидных цепей отдельных молекул коллагена приобретает форму клубка. Однако неструктурированные пептидные цепи еще связаны ковалентными связями и не могут перейти в раствор. В результате влажного нагрева коллагеносодержащих тканей образуются полидисперсные продукты распада. При медленном нагреве преобладают высокомолекулярные соединения, при интенсивном – соединения с меньшей молекулярной массой. При сваривании коллагена в раствор около 60% содержащихся в ткани мукоидов.

На дезагрезацию коллагена в процессе нагрева влияют и некоторые другие факторы. Смещение pH мяса от изоэлектрической точки усиливает дезагрегацию, увеличение возраста животного от одного до полутора лет снижает ее примерно в 2 раза.

Таким образом, степень дезагрегации коллагена и образование продуктов распада зависят не только от температуры, до которой нагревается продукт, состояния и состава мяса, но и от скорости, а, следовательно, и способа нагрева.

Процесс нагрева белков сопровождается развертыванием глобул и высвобождением свободных радикалов, в связи, с чем возникает возможность образования межмолекулярных связей, агрегации частиц и их осаждения, что ведет к уменьшению растворимости белков.

Внутренняя перестройка белковой молекулы – собственно денатурация – проявляется в агрегировании полипептидных цепей. Процесс агрегирования протекает в две стадии: укрупнение размеров частиц без выхода из раствора и последующая коагуляция. Агрегация денатурированных белковых молекул, или изменение их четвертичной структуры, являющаяся следствием предшествующей перестройки вторичной и третичной структур, сопровождается сокращением лиофильных центров белковой молекулы и снижением водоудерживающей способности мяса. Агрегация и коагуляция белков определяют образование непрерывного пространственного каркаса готового продукта.

Перестройка белковой молекулы при денатурации ухудшает гидрофильные и усиливает гидрофобные свойства ткани, следовательно, защитное (стабилизирующее) действие гидратационных слоев вблизи полярных группировок ослабляется. Внутримолекулярные связи заменяются межмолекулярными, образуется нерастворимый сгусток, т. е. происходит коагуляция белков (из разбавленных растворов выпадают хлопья, из концентрированных - коагель).

Процесс денатурации белков сопровождается разрушением структуры воды, вследствие чего действующие между протофибриллами вторичные силы (силы Ван-дер-Ваальса) придают молекуле миозина более компактную форму, при этом выделяется часть жидкости.

В результате денатурации и коагуляции мышечных белков прочностные свойства мяса возрастают, а сваривание коллагена и последующий его гидролиз, напротив, их ослабляют.

 Изменение жиров

Тепловая обработка мяса вызывает разрушение сложной внутриклеточной коллоидной системы, в составе которой содержится жир. Он при этом плавится, а затем коалесцирует, образуя в клетке гомогенную фазу в виде капли. Если жировые клетки были разрушены до тепловой обработки или разрушаются в процессе нагрева, расплавленный жир оттекает, сливаясь в единую объемную фазу. В тех случаях, когда нагрев происходит в водной среде, небольшая часть жира образует с водой эмульсию.

При достаточно длительном нагреве с водой (в том числе внутриклеточной) жир претерпевает существенные химические изменения, при умеренном – они невелики, но легко обнаруживаются. Если гидролиз жира в небольших масштабах не ведет к снижению пищевой ценности, то присоединение гидроксильных групп к кислотным радикалам – прямое свидетельство снижения пищевой ценности части жира.

При варке мяса в большом количестве воды при кипении (бульоны, супы) часть выплавленного жира эмульгируется, распределяясь по всему объему бульона в виде мельчайших шариков. Эмульгированный жир придает бульону неприятный салистый привкус и мутность. Эмульгирование жира усиливается при увеличении гидролиза и интенсивности кипения. Периодическое удаление жира с поверхности бульона снижает степень его эмульгирования.

В процессе нагрева жира возрастает перекисное число жира и значительно увеличивается содержания в жире акролеина. Цвет жира темнеет, запах ухудшается главным образом в результате перехода в него окрашенных продуктов пирогенетического распада органических веществ.

Прогревание бульона при 100С в течение часа предохраняет жир от прогоркания. По-видимому, это обусловлено образованием антиокислителей.

 Изменение экстрактивных веществ

Экстрактивные вещества мяса при его тепловой обработке претерпевают существенные изменения, которые играют решающую роль в образовании специфических аромата и вкуса вареного мяса. Тщательно отмытое от растворимых в воде веществ мясо после варки обладает очень слабым запахом, а водная вытяжка из него имеет вкус и запах вареного мяса. После диализа эта вытяжка почти утрачивает запах, присущий вареному мясу.

Изменения, обусловливающие появление такого запаха, еще не полностью изучены. Известно, однако, что важную роль в этом играют глутаминовая кислота и продукты распада инозиновой кислоты. Глутаминовая кислота и ее натриевая соль даже в незначительных количествах (0,03%) придают продукту вкус, близкий к вкусу мяса.

При нагревании усиливается распад инозиновой кислоты: при 95 оС через 1ч распадается около 80% кислоты с образованием преимущественно гипоксантина. При этом несколько возрастает количество неорганического фосфора в результате образования фосфорной кислоты.

В процессе варки изменяется также содержание других экстрактивных веществ. Около 1/3 креатина, обладающего горьковатым вкусом, превращается в креатинин. Распадается около 10..15 % холина. В результате распада соединений, содержащих лабильно связанную серу, в вареном мясе образуется сероводород, количество которого зависит от вида и состояния мяса, а также от условий варки. Оно возрастает с повышением температуры и увеличением продолжительности нагрева. В вареной говядине сероводорода меньше, чем в свинине, а в ней меньше, чем и в телятине, в мороженом мясе больше, чем в охлажденном. Выделение сероводорода при умеренных температурах связывают с распадом глутатиона (трипептид, образуемый глицином глутаминовой кислоты и цистином), так как он возникает при исчезновении серы глутатиона. Одновременно с выделением сероводорода в результате распада глутамина и глутатиона образуется глутаминовая кислота. Введение окислителей (нитрита, нитрата) уменьшает скорость образования сероводорода.

При варке мясо в бульон выделяются вещества, в состав которых входят карбонильные группы, обладающие различным ароматом. В бульоне обнаружены ацетальдегид, ацетоин, диацетил. Эти вещества возникают благодаря реакции взаимодействия свободных аминокислот с редуцирующими сахарами (в том числе глюкозой), которая приводит к образованию меланоидинов. В ходе сложной окислительно-восстановительной реакции в качестве побочных продуктов выделяются карбонильные соединения. В бульоне, полученном варкой обезжиренной говядины, с помощью хроматографического метода обнаружены низкомолекулярные жирные кислоты (муравьиная, уксусная, пропионовая, масляная, изомасляная), также обладающие ясно выраженным ароматом. Можно полагать, что специфичность запаха вареного мяса связана с составом липидной фракции мышечной ткани, так как запах различных видов обезжиренного мяса мало различается. Вопрос о том, какие именно вещества придают мясу его специфический аромат и вкус после тепловой обработки, еще до конца не решен. Однако экспериментально доказана связь вкуса мяса с содержанием в нем свободных пуринов, в частности гипоксантина. Количество этих веществ в мышечной ткани различно и зависит от глубины развития посмертных изменений в тканях. Запахом бульона обладает также кетомасляная кислота

 Изменение витаминов

Тепловая обработка продуктов животного происхождения при умеренных температурах (до 100 оС) уменьшает содержание в них некоторых витаминов из-за химических изменений, но главным образом в результате потерь во внешнюю среду. В зависимости от способа и условий тепловой обработки мясо теряет, %: тиамина 30…60, пантотеновой кислоты и рибофлавина 15…30, никотиновой кислоты 10…35, пиридоксина 30…60, часть аскорбиновой кислоты. При варке изделий в оболочке потери витаминов несколько меньше. Так, при паровой варке теряется 25…26% тиамина и 10…20% рибофлавина, а при варке в воде – 10% тиамина и 14% рибофлавина. Таким образом, тепловая обработка продуктов животного происхождения даже при умеренных температурах приводит к некоторому снижению их витаминной ценности. Нагрев при температуре выше 100 оС вызывает различное по степени разрушение многих витаминов, содержащихся в мясе. Степень разрушения зависит от природы витаминов, температуры и продолжительности нагрева. Аскорбиновая кислота (витамин С) также разрушается и тем больше, чем выше температура и продолжительнее нагрев.

 Изменение водоудерживающей способности

Под водоудерживающей способностью мяса понимается сила, с которой часть его собственной воды или собственной с небольшим количеством добавленной воды удерживается белками, а также другими веществами и структурными системами мяса при воздействии на него каких-либо сил извне.

Белковая макромолекула окружена водой, которую нельзя рассматривать как нейтральное вещество, так как благодаря своим уникальным свойствам она, с одной стороны, подвергается воздействию растворенных в ней белковых макромолекул, с другой – сама активно влияет на конформацию белка известно, что вода служит связующим звеном между белковыми молекулами. Составляя 70…75 % массы живой клетки (в протоплазме ее содержится около 70…80 %, в фибриллах – около 70, в саркоплазме – 20, во внеклеточном пространстве – 10 %), вода представляет собой ту жидкую среду, в которой осуществляются обмен и транспортировка веществ. Стабилизация пространственной структуры белка и других биополимеров в значительной мере осуществляется в результате их взаимодействия с водой.

Максимальное количество влаги, отделяемой при варке, зависит от величины pH сырья и температуры и в меньшей – от температуры греющей среды. Максимальное количество влаги, выделяющейся из мяса при варке, наблюдается при pH греющей среды равной 5,25 и при нагреве до 75 оС. С увеличением pH при нагреве мяса до одинаковой температуры, не превышающей 75 оС, количество слабосвязанной влаги снижается. При нагреве мяса выше 75 оС закономерность отделения слабосвязанной влаги изменяется: при температуре 90 оС и выше количество ее возрастает с увеличением pH. Механизм образования мясных бульонов связан с тепловой денатурацией мышечных и соединительнотканных белков. Мышечные белки при денатурации свертываются, отдают в окружающее пространство часть влаги (около 50%), которая, выходя из мышечных волокон, увлекает за собой часть экстрактивных и минеральных веществ. Этот концентрированный раствор попадает в межмышечное пространство, однако в нем не задерживается из-за тепловой деформации прослоек мускульной соединительнотканной ткани. Куски мяса сжимаются во всех направлениях, в результате чего отпрессованная белками жидкость вместе с растворенными в ней экстрактивными и минеральными веществами вытесняется в окружающую воду, образуя бульон. Определенная роль в образовании бульона принадлежит диффузии водорастворимых веществ из мяса в окружающую воду при варке мяса. Возможность для диффузии возникает в результате денатурации белков мяса, в том числе сарколеммы мышечных волокон и соединительнотканных прослоек. Движущей силой диффузии служит разность концентраций растворимых веществ из мяса в бульон в результате диффузии может быть усилен двумя путями: увеличением гидромодуля (соотношения воды и мяса) и более мелкой нарезкой мяса, в результате чего возрастает поверхность контакта между мясом и водой. Погружение мяса для варки в холодную или горячую воду не влияет на количество растворимых веществ, переходящих из мяса в бульон. При варке говядины без костей крупными кусками (1…2 кг) в воду переходит около 2 % растворимых веществ от массы мяса, в том числе 1,5 % органических и 0,5 % минеральных. Если сухой остаток мясного бульона принять за 100%, то он распределится так: 49 % - экстрактивные вещества, 25 – минеральные вещества, 24 – белки (в основном глютин), 2% - эмульгированный жир.